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On the threshold of a dream

Some ideas on how to
optimize and repair
human brains?

Duch W. (2012) Mind-Brain Relations, Geometric Perspective and
Neurophenomenology, American Phil. Assoc. Newsletter 12(1), 1-7.
Duch, W. (2019) Mind as a shadow of neurodynamics. Physics of Life Reviews




Global Brain Initiatives
or why is this so important?




Costs of brain diseases

European Brain Council (EBC) reports (2010; 2014).
Consensus Statement on European Brain Research (2015) includes a chapter
on Computational Neuroscience, data repositories and analytics.

179 million, or 1/3 of all European citizens, had at least one brain disorder.
45% of the total annual health budget of Europe!

Total cost of brain disorders in EU estimated in 2010: 798 billion €/year,
average direct health care costs represent 37%,
direct nonmedical costs 23%, and indirect costs 40%.

China: >20% of population (~*250 mIn) suffering from some mental disorder.
Total costs of disorders of the brain in Poland, 2010 estimates.

Addiction Anxiety Dementia Epilepsy Headache Mood Psychotic Stroke x1000
1201 5261 358 298 12025 2499 371 503 # people
2 501 2882 2480 745 1559 4489 3723 2187 min€

Gustavsson et al. (2011). Cost of disorders of the brain in Europe 2010.
European Neuropsychopharmacology, 21(10), 718-779.
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International Brain Initiatives

Canadian Brain
Research Strategy

European l.!nion )
Human Brain Project ‘ Korea Brain Initiative \
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Australian Brain Initiative
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Neurotechnologies

Accelerate the development and Support multi-disciplinary teams and
application of new neurotechnologies. stimulate research to rapidly enhance current
neuroscience technologies and catalyze

innovative scientific breakthroughs.

Human Brain Project, EU Flagship, and Obama BRAIN Initiative (2013):
Brain Research through Advancing Innovative Neurotechnologies.

“Develop new technologies to explore how the brain’s cells and circuits
interact at the speed of thought, ultimately uncovering the complex links
between brain function and behavior. Explore how the brain records,
processes, uses, stores, and retrieves vast quantities of information. Help
bring safe and effective products to patients and consumers.”

Since 2013 numerous exciting developments in neurotechnology and our
understanding of the brain have been made by scientists across the globe.




Join the IEEE
Brain Community

JOIN FREE

The mission of IEEE Brain is to facilitate cross-disciplinary collaboration and
coordination to advance research, standardization and development of
technologies in neuroscience to help improve the human condition.

20 IEEE Societies are involved, including:

IEEE Computational Intelligence Society; Computer Society; Consumer
Electronics Society; Digital Senses Initiative; Robotics and Automation Society;
Sensors Council; Signal Processing Society; Society on Social Implications of
Technology; Systems, Man, and Cybernetics Society, International Neuroethics
Society, and a few other societies.

Most these societies are also involved in artificial intelligence.

Satya Nadella (CEO, Microsoft): to celebrate National Disability Employment
Awareness Month, I’'m sharing examples of how technology can be applied to
empower the more than one billion people with disabilities around the world.




Workshop on Brair‘l-Machi"r'\étlhtei’face Systems
Global Current and Emerging Brain Initiative Meeting

rnational Conferefite®

Brain Hackathon ]

N

Presic
Icome from IEEE !
= James A. Jefferies

Systems, Man, and Cybernetics Society

Part of the Brain-Machines Interface Workshop and SMC2018 (M. Smiths, UC
Berkeley). The IEEE SMC Society and the IEEE President, James Jefferies, are
proud to invite you on to a special meeting of Global Current and Emerging
Brain Initiative leaders and representatives from other groups working on
large-scale multi-year brain projects from Australia, Canada, China, Europe
(HBP), Japan, Korea, New Zealand, Poland, Russia, and US (NSF and NIH), with
representatives from the IEEE Brain Initiative, International Neuroethics
Society, industry, and other stakeholders.

IEEE welcomes collaborative discussions with all stakeholders to better align
and integrate IEEE with other existing brain efforts.



EU steps in

April 2018: Communication from the Commission to the European Parliament,
the European Council, the Council, the European Economic and Social
Committee & the Committee of Regions on Artificial Intelligence for Europe.

“Like the steam engine or electricity in the past, Al is transforming our world,
our society and our industry. ... The economic impact of the automation of
knowledge work, robots and self-driving vehicles could reach between EUR 6.5
and EUR 12 trillion annually by 2025.”

By the end of 2018 EU private investments ~3 G€, USA 12-18 G£.
EU as a whole ... at least 20 GE€ by the end of 2020, then aim for > 20 G€/y.

e Digital Transformation 2021-27 includes:
supercomputing (2.7 G€ )+ Al (2.5 G€) + cybersecurity (2.0 G€) + advanced
digital skills/use (700 M€).

EurAl CLAIR (~2000 wspierajgcych), 7.09 sympozjum.
ELLIS, European Lab for Learning & Intelligent Systems

Coordinated Plan on Artificial Intelligence 12/2018
4 EU Al centers @ 12 M€ in 2019, including medical applications and NLP.




Neuroscience => Al

Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M. (2017).
Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2), 245-258.

Affiliations: Google DeepMind, Gatsby Computational Neuroscience, Institute of
Cognitive Neuroscience, Uni. College London, Uni. of Oxford.

Artificial neural networks — simple inspirations, but led to many applications.

Bengio, Y. (2017). The Consciousness Prior. ArXiv:1709.08568.
Amoset al. (2018). Learning Awareness Models. ArXiv:1804.06318.

Al Systems inspired by Neural Models of Behavior:

(A) Visual attention, foveal locations for multiresolution “retina
representation, prediction of next location to attend to.

(B) Complementary learning systems and episodic control: fast learning
hippocampal system and parametric slow-learning neocortical system.
(C) Models of working memory and the Neural Turing Machine.

III

(D) Neurobiological models of synaptic consolidation and the elastic weight
consolidation (EWC) algorithm.




BICA, Brain-Inspired Cognitive Architecture

Understanding the brain
from engineering perspective
means to build a model of
the brain showing similar
functions.

Cognitive informatics,
Neurocognitive Informatics.

BICA = Brain Inspired

Cognitive Architecture. s L

Review: Duch, Oentaryo,
Pasquier, Cognitive
architectures: where do we
go from here? 2008
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1024 TN neuromorphic chips, or 1B neurons and 256B synapses!

Complexity ~ horse brain, 1/4 gorilla, 1/6 chimpanzee.

COMPUTING
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BCl: wire your brain ...

Non-invasive, partially invasive and invasive signals carry progressively more
information, but are also harder to implement. EEG is still the king!

Supervised
Classifiers

(LDA, SVM)
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Analysis (FIR, NN)

(Continuous)

: | Decision
Generative | Process

Models

| Rate Coding
>  (Semi-
Continuous)

Semi-Supervised

Reinforcement
Learning

v

Spikes
(Point
Process)

_ Trajectory
Unsupervised | Control

Correlation
Metrics

wi

State
Machines




Brain-Computer-Brain Interfaces

Bidirectional BCI

: | External
-~ D) @: — Controller
L » ,
Wireless data

& power :

Sense & Actuate

Record / Stimulate brain for

brain == sensory feedback
signals 7 3.

Closed loop system with brain reading and stimulation for self-regulation.
Sensory signals may com from Virtual Reality.




Brain stimulation

Noninvasive Brain
Stimulation

I Transcranial [ Transcranial ‘

Magnetic Electrical
Stimulation Stimulation

Transcranial Transcranial
Alternating Random
Current Moise
Stimulation Stimulation

Single . Transcranial
Paired pulse i Paltermned kg
pulse TMS ‘ Repetitive TMS TMS Direct Current

T™S Stimulation
(tDCS)

\ . e —— S —— {tACS) (tRNS)

i Cortico- ; Continucus Intermittent . |
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L— PHYSIOLOGY "‘ NEUROMODULATION

ECT — Electroconvulsive Therapy
VNS — Vagus Nerve Stimulation
Ultrasound, laser ... stimulation.

Complex techniques, but portable
phones are also complex.

Attention? Just activate your cortex,
no effort is needed!




HD EEG/DCS?

EEG electrodes + DCS.

Reading brain states

=> transforming to common
space

=> duplicating in other brains

Applications:

depression, neuro-plasticity,
pain, psychosomatic
disorders, teaching!

Multielectrode DCS
stimulation with 256
electrodes induces
changes in the brain
increasing neuroplasticity.




Synchronize PFC/PC

Violante, I.R. et al. Externally induced frontoparietal synchronization modulates

network dynamics and enhances working memory performance. ELife, 6 (2017).
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Million nanowires in your brain?

DARPA (2016): Neural Engineering System Design (NESD)
Interface that reads impulses of 10° neurons, injecting currents to 10° neurons,
and reading/activating 103 neurons.

DARPA Electrical Prescriptions (ElectRx) project enables “artificial modulation of
peripheral nerves to restore healthy patterns of signaling in these neural circuits.
ElectRx devices and therapeutic systems under development are entering into
clinical studies.”

Neural lace i neural dust project for cortex stimulation.

neural
lace

vltra-thin




Targeted Neuroplasticity Training

e Meurostimulation device activates peripheral nerve(s)

@ Neuromodulators boost synaptic plasticity

é@ﬁ Neuronal connections
are tuned to improve
cognitive skills

DARPA (2017): Enhance learning of a wide range of cognitive skills, with a goal of
reducing the cost and duration of the Defense Department’s extensive training
regimen, while improving outcomes. TNT could accelerate learning and reduce
the time needed to train foreign language specialists, intelligence analysts,
cryptographers, and others.




Memory implants

Ted Berger (USC, Kernel): hippocampal neural prosthetics facilitate human
memory encoding and recall using the patient's own hippocampal
spatiotemporal neural codes. Tests on rats, monkeys and on people gave
memory improvements on about 35% (J. Neural Engineering 15, 2018).

DARPA: Restoring

Active Memory

(RAM), new closed-

loop, non-invasive

systems that leverage Multi-Site
the role of neural Electrode Array
“replay” in the

formation and recall

of memory to help

individuals better

remember specific

episodic events and

learned skills.
Hippocampus 3 //




Brain networks




Neuropsychiatric phenomics

time scales

2008: The Consortium for
Neuropsychiatric Phenomics

years
(107)

“... categories, based upon __ . o
presenting signs and symptoms,
may not capture fundamental
underlying mechanisms of s
dysfunction” (Insel et al., 2010).

hours

New approach: RDOC NIMH.
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Description of organisms at
different levels will help to 6
answer different types of
questions. |

Network level is in the middle and on i
can be connected to the mental Ny
level via computational models.

milliseconds
{1077)




RDoC

Research Domain Critenia Iniiative

NIMH RDoC Matrix for deregulation of 6 large brain systems.

Psychological
constructs are
necessary to talk
about mental states.

Sensorimotor systems
added in Jan. 2019
as sixth brain system.

How are they related
to physical processes?

DOMAINS

Constructs

COGNITION

sLanguage *Control sDeclar. Mem
*Working

. sPerception :
p Mem s Attention y

Thoughts
Behavior




Multi-level phenomics

Negative aftect
Research Domain Criteria (RDoC) ACC/MPEC
matrix is based on multi-level
. . . Insula Insula
neuropsychiatric phenomics
describing large brain systems
. - . Amygdala | Amygdala
deregulation, but links to behavior @ P B AC _
should be analyzed at the network . o
. - . Mindfulness, _—_ Serotonin Cognitive
level, where specialized functions i M -eoptake s
are implemented. In Al: therapies, TMS 1 inhibitors, DBS therapies
M. Minsky, Society of mind (1986)
. Positive affect Attention Cognitive control
Decompose brain network
. ) dACC/VMPFC msPEC DLPFC DLPFC
dynamics into meaningful ' LPFC LPFC
components of activity related to P al a1 PG PCG
various brain functions. | alPL | alPL
. : : DPC DPC
Include influence of genes, Striatum | Striatum | |
molecules, cells, circuits, Precuneus
physiology, behavior, self-reports = Dopamine- Attention ® Cognitive
. noradrenaline training, training, TMS
on network functions. B iciistake .
inhibitors




RDoC Matrix for ,,cognitive domain”

Construct/Subconstruct

Attention
Perception Visual Perception
Auditory Perception
Olfactorny!SomatosensoryMultimodal/Perception
Declarative Memory
Language

Cognitive  Goal Selection; Updating, Representation, and
Control Maintenance = Focus 1 of 2 = Goal Selection

Goal Selection; Updating, Represeniation, and
Maintenance = Focus 2 of 2 = Updating,
Representation, and Maintenance

Response Selection; Inhibition/Suppression =
Focus 1 of 2 = Response Selection

Response Selection; Inhibition/Suppression =
Focus 2 of 2 = Inhibition/Suppression

Performance Monitoring
Working Active Maintenance
iematy Flexible Updating
Limited Capacity
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Simulations of brain networks




Model of reading & dyslexia

Emergent neural simulator:

Aisa, B., Mingus, B., and O'Reilly, R. The
emergent neural modeling system.
Neural Networks, 21, 1045, 2008.

3-layer model of reading:

orthography, phonology, semantics, or
distribution of activity over
140 microfeatures defining concepts.

In the brain: microfeature=subnetwork. / 0iiey a0 G B
Hidden layers OS/OP/SP_Hid in between. S -

Learning: mapping one of the 3 layers to the other two.
Fluctuations around final configuration = attractors representing concepts.

How to see properties of their basins, their relations?
Model in Genesis: more detailed neuron description.




Computational Models

Models at various level of detail.

3 types of ion channels.
Models of attention:

e Posner spatial attention;

Models of word associations:

Models of motor control.

Critical: control of the increase in
intracellular calcium, which builds up
slowly as a function of activation.
Initial focus on the leak channels,
2-pore K*, looking for genes/proteins.

e Minimal model includes neurons with

nput Ca++
e attention shift between visual objects. @ _5*/ *V
| m
Na/K /, -7

P
e sequence of spontaneous thoughts. HR

Inhibitory
Synaptic

D?V
OV

ABCC Cys-loop
Chioride (GABA, nACh, glycine, 5HT)

ionotropic glutamate
ENaC/ASICIP2X
TRP
IPzryanodine
CHNG

voltage-gated cation

2-pore K*

Ki/GIRK

PKD




lon channels

Hundreds of ion channels
have been identified in neurons ...

Major challenge for computational
neurosciences:

what happens with the nervous
system when some of them are
dysfunctional?
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Plan for action: 8-fold way.

Focus on neurodynamics. Include ion channels and other biophysical
parameters for neurons/networks in your models.

Create simulation of normal functions, ex: attention shifts.

Catalogue all possible changes in biophysical parameters that lead to
specific deregulation of normal behavior, ex: all types of ion channels.

Look for dysfunctional proteins related to biophysical parameters, ex:
those proteins that build ion channels.

Use gene expression atlases to find correlations of proteins with
mutations. Explain diversity of mutations and weak disease signals.

Predict changes in real brain signals: EEG/MEG, neuroimaging, intracranial

Analyze existing neuroimaging data, functional and anatomical. Perform
new experiments to verify proposed mechanisms leading to dysfunctions.

Propose close-loop therapies. Psychosomatic pain is a good target.




Recurrence Plot iflag)

Transitions to new patterns that share some active units
(microfeatures) shown in recurrence plots.




Viser toolbox

'ﬂERTﬂEI“]I]K HOME FEATURES EXAMPFPLES DOWNLOAD Doc TEAM CONTACT

an | RR |[ FsaJ m |nm5| - | Clusterization :

i |1

Respiratory Rythm Generator Lorez-énz_ A.l;_t':rég:tor P Orbits swap in Lorenz Dow Jones Stock Index
: § Aktractor

Cyclic Movements Model Lona simulation of Dyslexia Maodel of Word Reading and Lorenz Attractor

Nasz Viser toolbox (Dobosz, Duch) do wizualizacji szeregdw czasowych w
wielu wymiarach réoznymi technikami.




Probability of recurrence

e (PaR = 00359357
Recumance Ploi ilag)
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Probability of recurrence may be computed from recurrence plots,
allowing for evaluation how strongly some basins of attractors capture
neurodynamics.




Fast transitions

Recemnce Plot (coal)

10 @O 0 30 3] 40 43 50

Attention is focused only for a brief time and than moved to the next attractor
basin, some basins are visited for such a short time that no action may follow,
corresponding to the feeling of confusion and not being conscious of fleeting
thoughts.




Trajectory visualization

Recurrence Flot Wultidimensional Scaling
2000
e [ | : L .
1 ; y 06.. .. R A O S P 1600
1600} ' Ol N e T A R S
¥ N / TR : ; AP v N
it & - Wfd é B - 1400
|8 s Vg2 b [
.
12009 | [= i F L 1200
- = - "J 1000
1000 5 ! o . - e ” P 4256
500 i) ™ ~ & ~ T =00
m L L i
£00 (¥ i _ [ B B00
- =14 Ir' I-I-:
400 | e { Joa ] - 400
h ; &
el 3 ‘
— ~
200 e ik . E‘ n
[ N | 4 T
200 400 GO0 GO0 1000 1200 1400 1600 1800 2000

Recurrence plots and MDS/FSD/SNE visualization of trajectories of the brain
activity. Here data from 140-dim semantic layer activity during spontaneous
associations in the 40-words microdomain, starting with the word “flag”.

Our toolbox: http://fizyka.umk.pl/~kdobosz/visertoolbox




ASD EEG SVM Classification

Predict

/ Leave-one-out ™\

training set Machine
Learning:

find separating

plane from .

._- training data Separating
plane

L

J Predict
Test set only

[
= Autism Spectrum Disorder
= Low risk controls: not-ASD
= High risk, but not-ASD

Wavelet decomposition, Recurrent Quantification Analysis,
feature ranking and machine learning. Nonlinear features are critical to
achieve good results, and their correlated with ASD depends on age.




EEG early ASD detection

Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG Analytics for Early
Detection of Autism Spectrum Disorder: A data-driven approach. Scientific
Reports, 8(1), 6828.

EEG of 3 to 36-month old babies, 19 electrodes selected from 64 or 128.

Daubechies (DB4) wavelets transform EEG signal into 6 bands.

7 features from Recurrence Quantitative Analysis (RQA): RP entropy,
recurrence rate, laminarity, repetition, max/mean line length, trapping time.

In addition sample entropy and Detrended Fluctuation Analysis was used.

Nonlinear features were computed from EEG signals and used as input to
statistical learning methods. Prediction of the clinical diagnostic outcome of
ASD or not ASD was highly accurate.

SVM classification with 9 features gave high specificity and sensitivity,
exceeding 95% at some ages. Prediction using only EEG data taken as early as 3
months of age was strongly correlated with the actual measured scores.




EEG non-linear features

Features: not only structure, but also dynamics.

Nonlinear invariant measures of a time series and their physical
interpretation, recurrence quantification analysis (RQA).

For example:

Sample Entropy (SampE)

Entropy derived from recurrence plot (L_entr).

Recurrence rate (RR), probability of recurrence.
Determinism (DET), repeating patterns in the system.
Laminarity (LAM), frequency of transitions between states.
Trapping time (TT), time in a given state.




Probability of recurrence

e (PaR = 00359357
Recumance Ploi ilag)
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| 450 S00

Probability of recurrence may be computed from recurrence plots,
or from clusterization of trajectory points, allowing for evaluation
how strongly some basins of attractors capture neurodynamics.

Our Viser Toolbox is used for all visualizations




ASD vs Low Risk Healthy

RR =
recurrence
rate

L_max = max
line length,
related to
Lyapunov
exponent

TT = trapping
time

el Mo
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ASD EEG SVM Classification

Developmental
trajectories for SampkE in
the left temporal region
(T7 sensor) in higher
frequencies
(beta+gamma) for ASD,
LRC-, and HRA-

LRC low risk controls

HRA high risk for ASD
- no ASD




ASD EEG SVM Classification

Developmental
trajectories for SampkE in
the right temporal-
parietal region

(T8 +P4+P8 sensors) in
frequencies theta

through gamma for ASD,
LRC-, and HRA-.

Right Temporal-Parietal, th-g




Trajectory visualization

Recunanca Flog

Wultidimensional Scaling
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Trajectories may be visualized either using recurrence plots that shows relative
changes of the trajectory or some form of visualization showing absolute

positions of points on trajectories (MDS/FSD/SNE). Visualization shows
transitions between microstates, or attractor states.




Depth of attractor basins

Variance around the center of a cluster grows with synaptic noise; for narrow
and deep attractors it will grow slowly, but for wide basins it will grow fast.

Jumping out of the attractor basin reduces the variance due to inhibition of
desynchronized neurons.

oize of attractor basins in semantics layer [dyslex. praj]
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0014
0mz2

0.01

attractor size




Typical Development vs. Autism

Activation in Semantics layer [dyslex. proj] Activation in Semantics layer [dyslex. proj]
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All plots for the flag word, different values of b_inc_dt parameter in the
accommodation mechanism. b_inc_dt=0.01 & b_inc_dt = 0.005

b_inc_dt = time constant for increases in intracellular calcium building up
slowly as a function of activation, controls voltage-dependent leak channels.

kdobosz.wikidot.com/dyslexia-accommodation-parameters




Typical Development vs ADHD

Activation in Semantics layer [dyslex.proj] Activation in Semantics layer [dyslex.proj]
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All plots for the flag word, different values of b_inc_dt parameter in the
accommodation mechanism. b_inc_dt=0.01 & b_inc_dt = 0.02.

b_inc_dt = time constant for increases in intracellular calcium which builds
up slowly as a function of activation.

kdobosz.wikidot.com/dyslexia-accommodation-parameters
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Rapid Serial Visual Presentation

The

words

L

In

sentence |

appear l

one

Any RSVP applications for fast reading.

Simulation: showing series of words, looking for attention/associations.
star => flea => tent => lock => tart => hind




RSVP: typical brain

Recurrence Plot Becumence Plot
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Normal speed too fast, speed 5x
associations, context=>understanding microstates get blurred,

Some shallow microstates, no associations few associations




RSVP simulations: HFA

I .-ths .Jri -ﬂ.

1500

High functioning ASD case (HFA):
normal presentation fast presentation
long dwelling times enforced quick resynchronization
more internal stimuli.




RSVP simulations in deep autism

Recurence Plot Recurrence Plo

Normal speed fast presentation
skipping some words, more internal states

no associations some associations arise




Brain Data




Possible form of Brain Fingerprints

fMRI: BFP is based on V(X,t) voxel intensity of fMRI BOLD signal changes,
contrasted between task and reference activity or resting state.

EEG: spatial, spatio-temporal, ERP maps/shapes, coherence, various phase
synchronization indices.

Spatial/Power: direct localization/reconstruction of sources.

EEG microstates, sequences & transitions, dynamics in ROl space.
Spatial/Synch: changes in functional graph network structure.
Frequency/Power: ERS/ERD smoothed patterns E(X,t,f).

ERP global power maps: spatio-temporal averaged energy distributions.
EEG decomposition into components: ICA, CCA, tensor, RP ...

Model-based: The Virtual Brain, integrating EEG/neuroimaging data.

1.
2.
3.
4,
5.
6.
7.
8.

Spectral fingerprinting (MEG, EEG), power distributions.

Neuroplastic changes of connectomes and functional connections as results of
training for optimization of brain processes.




Measurement

Example: White matter tracts (via DTI) Adjacency matrix

Measurement
Activity

Example: Blood oxygen level (via fMRI) Similarity matrix Functional brain network

Lynn and Bassett (2018) The physics of brain network structure, function,
and control. arXiv:1809.06441.




Human connectome and MRI/fMRI

Node definition (parcelation)

Structural connectivity  Functional connectivity

Correlation
calculation

BOLD signal

Whole-brain graph

Binary matrix

44| Correlation
matrix

Many toolboxes available for such analysis. Bullmore & Sporns (2009)




Broadmann (1990) b AAL (2002) Power et al. (2011)

Schaefer et al. (2017) Gordon et al. (2017)

(a) Broadmann areas - cytoarchitectonic, (b) Automated Anatomical Labelling
(AAL) - macroanatomy, (c) Power parcellation, meta-analysis of fMRI studies,
(d) Glasser, multi-modal approach, (e) Schaefer - functional connectivity, (f)
Gordon et al. - functional connectivity. K .Finc, PhD thesis (2019)




ACC/MPFC PCC/PrCu
- Submaodule

% Voxel

JPCC/PrCu

ACC/MPFC plthtL

; o N
Submodule — Eﬁ;

-

STG -
Modules (or ICNs) ¢ IPUAG

within a brain suhmodl.l.l;;
within a modula

Nodes (voxels) within submodules in a module

Hierarchical, modular Russian doll-like organization of the human brain
networks. From Park and Friston (2013). Structural and functional brain
networks: from connections to cognition. Science, 342(6158):1238411




Posterior cingulate/precunaus -
Medial prefrontal
Left lateral parietal

Right lateral parietal . 83, Default Mode
Left inferior temporal .- 9 |

Right inferior temporal a2 Network
Medial dorsal thalamus
Right posterior cerebellum
Left posterior cerebellum-
Left frontal eye field

Right frontal eye field

Left posterior IPS .
Right posterior IPS | Dorsal Attention

, 9, TN
eft anterior IPS [~ 44, -39, Network
Right anterior IPS i v Sty
v Left MT -50, -66, - \—/
Right MT- ' 83 - _
ﬁ
I ]
=
\\\.._ __//

Dorsal medial PFC

Left anterior PFC | 45, i
Right anterior PFC |- ' 45 oL Executive Control |

Left superior parietal -50, -51, Network
Right superior parietal | !

Dorsal anterior cingulate 5 : ) , 967
Left anterior PFC -39, .
Right anterior PFC : . .
Left insula |- 41, 3, 6 +Salience Network >
Right insula : . "ol

Left lateral parietal

Left A
Right A

R hé{later.lal panetrtal_d J 2 i E
I malor cortex -3, ~£0,
Right motor cortex |- ' 56 2a | Sensorimotor |
SMAJ |21, 48 System |
- F) ]
Rﬁ‘t \\jg | 83, %} Visual System

' 27 :g}Auditory System

Correlation matrix representing resting-state functional connectivity
between selected brain regions Shows stronger connectivity for 7 large-scale
brain networks: default mode (DM), dorsal attention (DAT), executive control
network (FPN, CON), salience (SAL), sensorimotor (SOM), visual (VSN),
auditory (ASN). Switching DMN < Salience < FPN




Network Neuroscience

Communities
(modules))\

@® Rich club

Network neuroscience is focused on identifying network structures.
Hubs, rich club and core of the network. Hubs connect modules via
long-distance connections. Hubs are also often densely interconnected
forming so called ’rich club’ or integrated core.

Bullmore and Sporns (2012) The economy of brain network organization.
Nature Reviews Neuroscience, 13(5):336.




Neurocognltlve BaS|s of Cognltlve Control

Networks
FPN (fronto-parietal)
. CON (cingulo-opercular)

. SAN (salience)
l DAN (dorsal attention)
I VAN (vental atenton)
I OV (defauitmode
Motor & somatosensory

lAuditory

Visual

. Subcortical

Large scale canonical networks. Central role of fronto-parietal (FPN) flexible
hubs in cognitive control and adaptive implementation of task demands (black

lines=correlations significantly above network average). Cole et al. (2013).



Early training

Visual Motor Visual Motor Visual Motor Visual Motor

5 10 15 20 10 15 20 5 10 15 20 10 15 20

Sequence learning task: reproduce motion sequences represented on the screen
as a visual stimuli. Automatization increases modularity, distinct subnetworks,
reducing interference between different processes.

6-week motor sequence training resulted in autonomy of visual and motor areas.

Bassett et al. (2015) Learning-induced autonomy of sensorimotor systems.
Nature Neuroscience, 18(5):744.

Reddy et al. (2018). Brain state flexibility accompanies motor-skill acquisition.
Neurolmage, 171:135-147.
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Finn et al. (2015), Functional connectome fingerprinting: identifying
individuals using patterns of brain connectivity. Nature Neuroscience.
Top: highly unique; Bottom: highly consistent connections.
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Fl u |d nature Connectome Project

Development of brain in infancy: first learning how to move, sensorimotor
activity organizes brain network processes, rather consistent.

The Developing Human Connectome Project: create a dynamic map of human

brain connectivity from 20 to 44 weeks post-conceptional age, which will link
together imaging, clinical, behavioral, and genetic information.

Pointing, gestures, pre-linguistic (our BabyLab).

High-creative network Low-creative network

Prefrontal

%S §
N

Cerebellur

Brainstem




ASD: pathological FC

Comparison of connections for
patients with ASD (autism
spectrum), TSC (Tuberous
Sclerosis), and ASD+TSC.

Coherence between electrodes.
Weak or missing connections
between distant regions
prevent ASD/TSC patients from
solving more demanding
cognitive tasks.

Network analysis becomes very
useful for diagnosis of changes
due to the disease and learning;
correct your networks!

J.F. Glazebrook, R. Wallace, Pathologies in functional connectivity, feedback
control and robustness. Cogn Process (2015) 16:1-16




Biomarkers from neuroimaging

Data Acquisition Image Preprocessing Feature Selection

(three sites in Japan)

2y

A Model for ASD
2
if" [> SLR
L1-SCCA
ASD
(N=74) Models for other covariates
Demographic Medication
properties status

Soog Time course from Correlation matrix
T?i’, each region among 140 regions
N=107 ‘ 1 matrices wit
( ) Per subject diaanostic labels

P=0.65

Classification

AUC =0.93
P=6.7x107%

AUC = 0.65

P=0.012

N. Yahata et al, Psychiatry and Clinical Neurosciences 2017:71 Accuracy



Selected connections

C Superior

a Anterior

Anterior
>
101181504

Left

Inferior

Posterior
N. Yahata et al (2016): 29 selected regions (ROI) and 16 connections are sufficient

to recognize ASD with 85% accuracy in 74 Japanese adult patients vs. 107 people

in control group; without re-training accuracy was 75% on US patients.



Biomarkers of mental disorders

Functional connectivity-based Recasting current nosology in more
classifiers for mental disorders biologically meaningful dimensions

Normal ——
(typically-developed)

A

Each axis represents proneness to
a specific disorder derived from the
corresponding FC-based classifier.

MDD, deep depression, SCZ, schizophrenia, OCD, obsessive-compulsive disorder,
ASD autism spectrum disorder. fMRI biomarkers allow for objective diagnosis.
N. Yahata et al, Psychiatry & Clinical Neurosciences 2017; 71: 215-237




Intrinsic connectivity

Networks of

) Dorsal
functionally
coupled regions. A
A—P

Clustering
results for 1000
young adults. Erontal D

Lateral 8

18,715 spatial
locations are
characterized by
functional
coupling to the
1,175 ROI
vertices
(FreeSurfer).

Ventral

17-network intrinsic functional connectivity regions, from BTT Yeo et al. (2011).
Colors = same network regions, similar correlation profiles.




Connectivity in patients vs healthy

D Default @ Psychotic Is F &89 Healthy Comparison vers
RK f lliness ‘hosis S5,

/ .
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Limbic_« ofavdy A XY
Sal/VentAttn Sal/VentAttn o 42N o PR SN
DorsAttn 4 DorsAttn‘ g
SomMot Sora @0
i <) isua &

Comparison ’ ..
S0

Vo,
E oo\ 4
Left ‘% Right

$
Left %® Right

Baker et al, Functional connectomics of affective and psychotic pathology. PNAS
116, 9050 (2019) Regions from the 17-network intrinsic functional connectivity

solution by BTT Yeo et al. (2011)



Connectivity in patients vs healthy

Affective lliness without Psychosis

Psychotic lliness

Percent Deviation from Health Percent Deviation from Health

-50%

O Healthy Comparison O Healthy Comparison
. Non-Treatment Seeking Unipolar Depression O Bipolar Disorder with Psychosis

. Schizophrenia and Schizoaffective Disorder (Group 1)
. Schizophrenia (Group 2)

. Treatment Seeking Unipolar Depression
O Bipolar Disorder without Psychosis

Regions determined based on the 17-network solution from Yeo et al.

Control (health) = circle, % deviation shown.



Negative connections in MCI patients

w2
-
=
Q)

(Y

MCI patients (ADNI2),
positive and negative
functional connections
in one of the 5 states of
the Deep Auto-Encoder
(DAE) + HMM models
derived from the rs-
fMRI time series.

: L(%:?}JOPE):iS
(1)9D3%d
PRECG(2)
SFGEIOr(4)

o CAL(43) CAL(44)
Connections |W|>0.65. cuns) Cunces
SO o6y

Mo
fOG G(S‘?) O

Accuracy 72.6% with a T Mol s
sensitivity of 70.6% and -~ S/ac
a specificity of 75%.

Suk et al. Neuroimage
(2016)




Decoding mental states




Semantic neuronal space

Words in the semantic
space are grouped by
their similarity.

Words activate specific
ROIs, similar words
create similar maps

of brain activity.

Video or audio stimuli,
fMRI 60.000 voxel).
Gallant lab, Berkeley.
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Category traffic light: Passive Viewing




65 attributes related to
neural processes;

Colors on circle: general
domains.

J.R. Binder et al

Toward a Brain-Based
Componential Semantic
Representation, 2016

More than just
visual objects!

Decompose brain signals
for a given concept into
components coding
these attributes.




Mental images from brain activity

Can we convert activity
of the brain into the
mental images that we
are conscious of?

Try to estimate features
at different layers.

8-layer convolution
network, ~60 min
parameters, feature
vectors from randomly
selected 1000 units in
each layer to simplify
calculations.

Output: 1000 images.

Ll

SIFT+BoF

Ll
GIST
HMAX3
s
HMAX2
i
HMAX1




Brain activity <& Mental image

fMRI activity can be correlated with deep CNN network features;
using these features closest image from large database is selected.

Horikawa, Kamitani, Generic decoding of seen and imagined objects using
hierarchical visual features. Nature Comm. 2017.
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Neurodynamics




Sequence Tapping

Color edges = within-module connections, black edges = between-module
connections. Cohen and D’Esposito (2016). The segregation and integration
of distinct brain networks and their relationship to cognition.

J. of Neurosci, 36(48):12083—-12094
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Ciric et.al. (2017). Contextual connectivity: A framework for understanding the

intrinsic dynamic architecture of large-scale functional brain networks.
Scientific Reports 7, 6537




DMN time-averaged baseline.
Between-network allegiances (prob.
that nodes are in the same community).
Rim colors = canonical networks, rim
length = greater allegiance to other
networks, size of connections = strength
of between-network allegiances.
DMN1: weak within-network allegiance

strong to DAT, SAL, and VIS.
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EEG

Removal of artefacts is only partially automatic, it involves a lot of manual
work. Usually only a subset of electrodes is selected.
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Functional connectivity changes

Influence of brain games on functional connectivity: Phase Locking Value
(Burgess, 2013; Lachaux 1999), phase differences between signals
measured at each electrode. PLV => synchronization maps, info flow.




Microstates

Lehmann et al. B  schematic Controls vs. SCZ

= " = |
EEG microstate WS Al I A '
duration and syntax —— Y

in acute, medication- .j

naive, f|rst-ep|sode W Controls vs. Null SCZ vs. Null

schiquhrenia. W .

Psychiatry Research l \

Neuroimaging, 2005
C
20+ = et
N Fronto-Temporal
Dementia
: -10- I

Panic
-2 Disorder

Khanna et al.
Microstates in
Resting-State EEG.
Neuroscience and
Biobehavioral
Reviews, 2015

4-7 states 60-150 ms
Symbolic dynamics.

Percent change in microstate durafion of
condition vs. contral

Schizophrenia *
Ty




EEG bands and brain disorders

Differences in absolute power for REYECEE Delta  Theta  Alpha  Beta
. . Depression
each disorder (relative to control) FHES

for eyes closed condition (top), gcg'ti)mphfenia

eyes open (middle) and eyes open [GLLISCIECISE
. ADHD adults
and closed combined (bottom). Bipolar

White boxes indicate no change,  [{hr-uu_—,

black indicates an increase, and Autism

gray indicates a decrease. Eyes Open
Bipolar

Depression

Hashed boxes - opposing results

(contradictory). ADHD children
ADHD adults

Schizophrenia

Newson & Thiagarajan (2019). Autism

EEG Frequency Bands in PTSD

Psychiatric Disorders: A Review of [RARSCEEEERe e e

, . . . Depression No data No data
Resting State Studies. Frontiers in [y
Human Neuroscience, 12. Addiction-opioids

https://doi_org/10_3389/fnhum_20 M Increase Decrease [ No difference [A Opposing
18.00521




EEG localization and reconstruction
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Microstates sources

N. Subj. 145 148 161 93 100 120 93

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the
temporal dynamics of whole-brain neuronal networks: A review. Neurolmage,




Checkerboard reversal, 5 microstates

Stimulus Onset Ml

M1=>V1
M2 =>V2

M3=>Para-
hippocampal

M4=>BA7, left
PC, precuneus

M5=>dACC

<

Cacioppo, S., Weiss, R. M., Runesha, H. B., & Cacioppo, J. T. (2014). Dynamic
spatiotemporal brain analyses using high performance electrical neuroimaging:
Theoretical framework and validation. J. of Neuroscience Methods, 238, 11-34.




Spectral fingerprints

Scatter Plot and Fitted Gaussian

Single
subject

[
d e ROI

é—

Precentral Gyrus (left)

* Pictures from Keitel & Gross 2016 and Fieldtrip Group model

A. Keitel i J. Gross, ,,Indivial-Jz-a-I-F\uman brain areas can be identified from their
characteristic spectral activation fingerprints”, PLoS Biol 14(6), €1002498, 2016




Normalised Power

1.8}

Rectus L

1r.

Spectral fingerprints

Raw spectral modes in ROl 27: Rectus_L

| e— 78 %
13 %
10 %
P 14 Dn"lr(}

0.8

Normalised power
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A. Keitel i J. Gross, , Individual human brain areas can be identified from their

characteristic spectral activation fingerprints”, PLoS Biol 14, e1002498, 2016




Simultaneous EEG/fMRI

3 8

Raw EEG Data [ Functional MRI Anatomical MRI

¥ 3 3
obinba bt i ] Co-registered and
], Global Field Power normalized fMRI

Temporally downsampled EEG
(microstates)

4§ Sourceimaging

EEG Cortical Sources
$ Alignment

Surface Aligned Cortical Sources

§ Temporal ICA

Spatial ICA

EEG RSNs N - BOLD fMRI RSNs
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Spatial Comparison & Temporal Correlation




14 networks from BOLD-EEG

Data preprocessing

bad-channel reparation filtering ICA denoising re-referencing
J/

inverse solution

J' ICA decomposition

Volume conduction model creation

Connectivity analysis

co-registration

C
>

Electrode :
positions

forward

solution Head
—> model

segmentation

.
>

Liu et al. Detecting large-scale networks in the human brain. HBM (2017; 2018).




DMN hdEEG DAN hdEEG DSN hdEEG

B m&@

DAN fMRI DSN fMRI

ReT =

VFMN hdEEG &aw A AW“% ‘ PﬁN hdEEG
e SO %%% %
L VNS "7
VFN fMRI Whﬂ- A:‘ _ 2 AN VMR
@ & » XX
AL
m-ﬂt-smrEMEx

sICA on 10-min fMRI data (N = 24, threshold: p < 0.01, TFCE corrected). DMN, default
mode network; DAN, dorsal attention network; DSN, dorsal somatomotor network;

VEN, visual foveal network; AN, auditory network; MPN, medial prefrontal network.




EEG-RSN maps obtained using spatial ICA
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Plan for action - lessons from ASD

Focus on neurodynamics. Include ion channels and other biophysical
parameters for neurons/networks.

Create simulation of normal functions, ex: attention shifts.

Catalogue all possible changes in biophysical parameters that lead to
specific deregulation of normal behavior, ex: all types of ion channels.

Look for dysfunctional proteins related to biophysical parameters, ex:
those proteins that build ion channels.

Use gene expression atlases to find correlations of proteins with
mutations. Explain diversity of mutations and weak disease signals.

Predict changes in real brain signals: EEG/MEG, neuroimaging, intracranial

Analyze existing neuroimaging data, functional and anatomical. Perform
new experiments to verify proposed mechanisms leading to dysfunctions.

Propose close-loop therapies. Psychosomatic pain is a good target.




Perspectives

Many brain states are now linked to specific mental states,
and can be transformed into signals that we can understand:
motor intentions, plans, images, inner voices ...

Some large-scale functional networks have reasonable (although still not
perfect) interpretation, for example sensory networks, dorsal and ventral
attention networks, executive control, motor networks.

Individual differences and many psychological functions are directly linked
to connectome and functional networks, including multistable properties.

Al/ML draws inspirations from brain research, but also neural network
models and learning algorithms (CNN, recurrence networks, reinforcement
learning) help to interpret information processing in the brain.

Many neurocognitive technologies are coming, helping to diagnose, repair
and optimize brain processes.




In search of the sources
of brain's cognitive activity

Project ,Symfonia”, 2016-21
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Registration is open!
September 1-2, 2019
EARLY BIRD

REGISTRATION ENDS ON
JUNE 30!

PP-RAI

18-19.10.2018 @ Poznan

Polskie Porozumienie na rzecz
Rozwoju Sztucznej Inteligencji
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Jan Bjaalie, University of Oslo

Rafal Bogacz, University of Oxford
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Frances Skinner, University of Toronto « Global brain projects:
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University of Electronic Science and Technology China + Data management and workflows in neuroscience
Kirstie Whitaker, University of Cambridge + Future of academic publishing

Alexander Woodward, RIKEN (BS - Comparative and predictive connectomics
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Thank you for
synchronization
of your neurons

Google: W. Duch
=> talks, papers, lectures, Flipboard ...







